About InVivoMAb anti-mouse IL-12 The R1-5D9 antibody reacts with mouse IL-12. IL-12 is a heterodimeric cytokine composed of subunits IL-12α p35 and IL-12β p40. IL-12 is secreted by activated monocytes, macrophages, and dendritic cells. IL-12 plays roles in T lymphocyte differentiation, IFNγ production, and NK cell cytotoxicity. Overexpression of IL-12 p40 was observed in the central nervous system of patients with multiple sclerosis, suggesting a role of this cytokine in the pathogenesis of the disease. InVivoMAb anti-mouse IL-12 Specifications IsotypeRat IgG2a Recommended Isotype Control(s)InVivoMAb rat IgG2a isotype control, anti-trinitrophenol Recommended Dilution BufferInVivoPure pH 7.0 Dilution Buffer ImmunogenRecombinant mouse IL-12 p75 Reported Applicationsin vivo IL-12 neutralization in vitro IL-12 neutralization FormulationPBS, pH 7.0 Contains no stabilizers or preservatives Endotoxin<2EU/mg (<0.002EU/μg) Determined by LAL gel clotting assay Purity>95% Determined by SDS-PAGE Sterility0.2 μm filtered ProductionPurified from cell culture supernatant in an animal-free facility PurificationProtein G RRIDAB_1107700 Molecular Weight150 kDa StorageThe antibody solution should be stored at the stock concentration at 4°C. Do not freeze. Application ReferencesInVivoMAb anti-mouse IL-12 (CLONE: R1-5D9)Gimblet, C., et al (2017). "Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation" Cell Host Microbe 22(1): 13-24.e14. PubMedSkin microbiota can impact allergic and autoimmune responses, wound healing, and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site and to skin from co-housed naive mice. This observation allowed us to test whether a pre-existing dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naive mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases.Choi, Y. S., et al (2015). "LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6" Nat Immunol 16(9): 980-990. PubMedFollicular helper T cells (TFH cells) are specialized effector CD4(+) T cells that help B cells develop germinal centers (GCs) and memory. However, the transcription factors that regulate the differentiation of TFH cells remain incompletely understood. Here we report that selective loss of Lef1 or Tcf7 (which encode the transcription factor LEF-1 or TCF-1, respectively) resulted in TFH cell defects, while deletion of both Lef1 and Tcf7 severely impaired the differentiation of TFH cells and the formation of GCs. Forced expression of LEF-1 enhanced TFH differentiation. LEF-1 and TCF-1 coordinated such differentiation by two general mechanisms. First, they established the responsiveness of naive CD4(+) T cells to TFH cell signals. Second, they promoted early TFH differentiation via the multipronged approach of sustaining expression of the cytokine receptors IL-6Ralpha and gp130, enhancing expression of the costimulatory receptor ICOS and promoting expression of the transcriptional repressor Bcl6.Bertin, S., et al (2014). "The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells" Nat Immunol 15(11): 1055-1063. PubMedTRPV1 is a Ca(2+)-permeable channel studied mostly as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here we found that TRPV1 was functionally expressed in CD4(+) T cells, where it acted as a non-store-operated Ca(2+) channel and contributed to T cell antigen receptor (TCR)-induced Ca(2+) influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promoted colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4(+) T cells recapitulated the phenotype of mouse Trpv1(-/-) CD4(+) T cells. Our findings suggest that inhibition of TRPV1 could represent a new therapeutic strategy for restraining proinflammatory T cell responses.