InVivoSIM anti-human TNFα (Infliximab Biosimilar)

Clone Catalog # Category
Infliximab SIM0006
USD 224 - USD 7752

About InVivoSIM anti-human TNFα (Infliximab Biosimilar)

This non-therapeutic biosimilar antibody uses the same variable regions from the therapeutic antibody Infliximab making it ideal for research use. This Infliximab biosimilar reacts with human TNFα (tumor necrosis factor-alpha) a multifunctional proinflammatory cytokine. TNFα exists as a soluble 17 kDa monomer, which forms homotrimers in circulation or as a 26 kDa membrane-bound form. TNFα belongs to the TNF superfamily of cytokines and signals through its two receptors, TNFR1 and TNFR2 which can be activated by both the soluble trimeric and membrane-bound and forms of TNFα. TNFα is primarily produced by macrophages in response to foreign antigens such as bacteria (lipopolysaccharides), viruses, and parasites as well as mitogens and other cytokines but can also be expressed by monocytes, neutrophils, NK cells, CD4 T cells and some specialized dendritic cells. TNFα is known to play key roles in a wide spectrum of biological processes including immunoregulation, cell proliferation, differentiation, apoptosis, antitumor activity, inflammation, anorexia, cachexia, septic shock, hematopoiesis, and viral replication. TNFα dysregulation has been implicated in a variety of diseases, including autoimmune diseases, insulin resistance, and cancer. Infliximab blocks the interaction of TNFα with the TNFR1 (p55) and TNFR2 (p75) resulting in a down-regulation of the inflammatory response associated with autoimmune diseases.

InVivoSIM anti-human TNFα (Infliximab Biosimilar) Specifications

IsotypeHuman IgG1
ImmunogenHuman TNFα
Reported Applicationsin vitro TNFα neutralization in vitro functional assay Flow Cytometry ELISA Western Blot
FormulationPBS, pH 7.0 Contains no stabilizers or preservatives
Endotoxin<0.5EU/mg (<0.0005EU/μg) Determined by LAL gel clotting assay
Aggregation<5% Determined by SEC
Purity>95% Determined by SDS-PAGE
Sterility0.2 μm filtration
ProductionPurified from cell culture supernatant in an animal-free facility
PurificationProtein A
RRIDAB_2894727
Molecular Weight150 kDa
StorageThe antibody solution should be stored at the stock concentration at 4°C. Do not freeze.

Application References

InVivoSIM anti-human TNFα (Infliximab Biosimilar) (CLONE: Infliximab)

Di Ianni A, Fraone T, Balestra P, Cowan K, Riccardi Sirtori F, Barbero L (2023). "Assessing MAPPs assay as a tool to predict the immunogenicity potential of protein therapeutics" Life Sci Alliance 7(1):e202302095. PubMed

MHC-II-associated peptide proteomics (MAPPs) is a mass spectrometry-based (MS) method to identify naturally presented MHC-II-associated peptides that could elicit CD4+T cell activation. MAPPs assay is considered one of the assays that better characterize the safety of biotherapeutics by driving the selection of the best candidates concerning their immunogenicity risk. However, there is little knowledge about the impact of bead material on the recovery of MHC-II MS-eluted ligands in MAPPs assays. Here, we firstly describe a robust MAPPs protocol by implementing streptavidin magnetic beads for the isolation of these peptides instead of commonly used NHS-activated beads. Moreover, we assessed the impact of the cell medium used for cell cultures on the morphology and recovery of the in vitro-generated APCs, and its potential implications in the amount of MHC-II isolated peptides. We also described an example of a MAPPs assay application to investigate drug-induced immunogenicity of two bispecific antibodies and compared them with monospecific trastuzumab IgG1 control. This work highlighted the importance of MAPPs in the preclinical in vitro strategy to mitigate the immunogenicity risk of biotherapeutics.

Wang X, Su S, Zhu Y, Cheng X, Cheng C, Chen L, Lei A, Zhang L, Xu Y, Ye D, Zhang Y, Li W, Zhang J (2023). "Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors" Nat Commun 14(1):5778. PubMed

The pro-inflammatory state of macrophages, underpinned by their metabolic condition, is essentially affecting their capacity of combating tumor cells. Here we find, via a pooled metabolic gene knockout CRISPR screen that KEAP1 and ACOD1 are strong regulators of the pro-inflammatory state in macrophages. We show that ACOD1 knockout macrophages, generated in our induced pluripotent stem cell-derived CAR-macrophage (CAR-iMAC) platform, are strongly and persistently polarized toward the pro-inflammatory state, which manifests in increased reactive oxygen species (ROS) production, more potent phagocytosis and enhanced cytotoxic functions against cancer cells in vitro. In ovarian or pancreatic cancer mouse models, ACOD1-depleted CAR-iMACs exhibit enhanced capacity in repressing tumors, leading to increased survival. In addition, combining ACOD1-depleted CAR-iMACs with immune checkpoint inhibitors (ICI), such as anti-CD47 or anti-PD1 antibodies, result in even stronger tumor suppressing effect. Mechanistically, the depletion of ACOD1 reduces levels of the immuno-metabolite itaconate, allowing KEAP1 to prevent NRF2 from entering the nucleus to activate an anti-inflammatory program. This study thus lays down the proof of principle for targeting ACOD1 in myeloid cells for cancer immunotherapy and introduces metabolically engineered human iPSC-derived CAR-iMACs cells with enhanced polarization and anti-tumor functions in adoptive cell transfer therapies.

Zheng N, Fang J, Xue G, Wang Z, Li X, Zhou M, Jin G, Rahman MM, McFadden G, Lu Y (2022). "Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance" Cancer Cell 40(9):973-985.e7. PubMed

Cytotoxicity of tumor-specific T cells requires tumor cell-to-T cell contact-dependent induction of classic tumor cell apoptosis and pyroptosis. However, this may not trigger sufficient primary responses of solid tumors to adoptive cell therapy or prevent tumor antigen escape-mediated acquired resistance. Here we test myxoma virus (MYXV)-infected tumor-specific T (TMYXV) cells expressing chimeric antigen receptor (CAR) or T cell receptor (TCR), which systemically deliver MYXV into solid tumors to overcome primary resistance. In addition to T cell-induced apoptosis and pyroptosis, tumor eradication by CAR/TCR-TMYXV cells is also attributed to tumor cell autosis induction, a special type of cell death. Mechanistically, T cell-derived interferon γ (IFNγ)-protein kinase B (AKT) signaling synergizes with MYXV-induced M-T5-SKP-1-VPS34 signaling to trigger robust tumor cell autosis. CAR/TCR-TMYXV-elicited autosis functions as a type of potent bystander killing to restrain antigen escape. We uncover an unexpected synergy between T cells and MYXV to bolster solid tumor cell autosis that reinforces tumor clearance.